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U Köbler and K Fischer

Forschungszentrum Jülich, Institut für Festkörperforschung, D-52425 Jülich, Germany
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Abstract
The Curie phase line TC(x) of the diamagnetically diluted ferromagnets
EuxSr1−xS and the Néel phase line TN(x) of the diamagnetically diluted
antiferromagnets EuxSr1−xTe are analysed empirically on the basis of a mean-
field approximation. Experimental data for the transition temperatures are
collected from neutron scattering, magnetic specific heat and susceptibility
measurements. Neither phase line, TC(x) or TN(x), is proportional to the
concentration x of the magnetic atoms. It is shown that the deviations from
linearity correlate with the fourth-order interaction sum in the paramagnetic
phase. We therefore also ascribe the nonlinear x dependence of both phase
lines to fourth-order interactions. Furthermore, our zero field neutron scattering
measurements show that even for the strongly diluted EuxSr1−xS samples the
order parameters exhibit a T 2 Bloch law at low temperatures instead of a T 3/2

law. The T 2 law is a characteristic signature of fourth-order interactions in 3D
materials with half-integral spin. It is also observed that the critical exponent
β of the order parameter changes from β = 0.5 for x = 1 towards β = 1 at
about x � 2/3. This confirms that a new universality class is reached for a
random distribution of magnetic moments. However, all phase transitions are
first order and the critical power law applies only for the continuous part of the
rise in the order parameter.

1. Introduction

In this communication we mainly address the question to what degree the magnetic transition
temperatures of EuS and EuTe are affected by fourth-order exchange interactions, i.e.
biquadratic, three-spin and four-spin interactions. Up to now we evaluated the strength of these
interactions only in the high temperature limit on account of the Curie–Weiss temperature

3 of the cubic susceptibility χ3(T ) [1, 2]. In order to investigate the impact of fourth-
order interactions on the critical temperature it is essential to extend measurements to the
mixed composition series EuxSr1−xS and EuxSr1−xTe in which the magnetic constituent is
diamagnetically diluted with the isomorphous materials SrS and SrTe, respectively. In this
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way the relative weight of biquadratic, three-spin and four-spin interactions can be varied and
a decomposition into the individual interaction processes becomes possible [2, 3].

For the diamagnetically diluted ferromagnetic solid solutions EuxSr1−xS we observed
earlier that the Curie–Weiss temperature 
1(x) of the linear susceptibility χ1(T , x) is a
nonlinear function of composition x and can be described by


1(x) = 14.5x + 7.3x2. (1)

Later it was shown [2] that the quadratic x-dependence is essentially due to ferromagnetic
three-spin interactions while the linear coefficient of 14.5 K is given by a weighted sum of
bilinear and biquadratic interactions. This interpretation could be confirmed by a comparison
of the coefficients of equation (1) with the corresponding coefficients of the Curie–Weiss
temperature 
3(x) of the cubic susceptibility χ3(T , x)


3(x) = −19.2x + 21.9x2. (2)

In contrast to 
1(x), which is given by all interactions, 
3(x) is given exclusively by fourth-
order interactions [2]. As a consequence, the coefficients of equation (2) show that biquadratic
interactions are antiferromagnetic and three-spin interactions are ferromagnetic in EuxSr1−xS.
Four-spin interactions would give a term ∼x3 but could not be identified experimentally and
seem to be weak. Moreover, a comparison between the quadratic coefficients of equation (2)
and equation (1) shows that three-spin interactions affect the Curie–Weiss temperature 
1(x)

of the linear susceptibility with a reduced weight only.
The aim of the present experimental work is to investigate empirically whether a similar

analytic description as for 
1(x) given in equation (1) is also possible for the critical
temperatures TC(x). Earlier computer simulation investigations of the experimental TC(x) data
of EuxSr1−xS considered only bilinear interactions to nearest and next-nearest neighbours [4].
It is evident that neglecting contributions from fourth-order interactions to 
1(x) and to TC(x)

not only leads to wrong bilinear coupling parameters but also to a non-realistic spin dynamics.
Modelling the experimental TC(x) curve of EuxSr1−xS with Monte Carlo methods resulted
in a ratio between nearest (J1) and next-nearest (J2) neighbour bilinear coupling constants
of J2 ≈ −0.5J1. In an attempt to test this relation with an independent method, spin
wave dispersion measurements were performed on EuS single crystals [5]. These neutron
scattering data were also analysed assuming only bilinear Heisenberg interactions. They
confirmed that interactions are restricted essentially to nearest and next-nearest neighbours but
the experimental temperature dependence of the spontaneous magnetization was not correctly
reproduced using the fitted low temperature values for J1 and J2. This indicates that the spin
dynamics deviates, in fact, from that assumed.

A number of mean-field calculations have been carried out [6–9] on the modifications
which the inclusion of fourth-order exchange interactions introduces on the magnetic ordering
phenomena. Since these mean-field calculations cannot be expected to be quantitatively correct
we proceed here along empirical lines. It is hoped that the conclusions obtained in this work
may be of use for the development of an exact theory.

The analysis of the critical temperatures TC(x) and TN(x) is a more complicated task than
the analysis of the Curie–Weiss temperatures presented in equations (1) and (2) for 
1(x)

and 
3(x). First, in contrast to the Curie–Weiss temperatures which can be measured for all
x-values, a true long range magnetic order seems to be limited in both composition series to
∼0.5 < x < 1 [10, 11]. This restricts the observable x-range for Néel and Curie temperature
accordingly and limits the accuracy of a polynomial fit. Second, in both composition series
changes in spin structure occur at a critical composition xc, which is xc

∼= 0.88 for EuxSr1−xS
and xc

∼= 0.85 for EuxSr1−xTe [12]. As a consequence, TC(x) and TN(x) can be expected to
have a different analytic behaviour in the two composition regions.
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We should explain this feature in some more detail. The two Curie–Weiss laws for
linear and cubic susceptibility obtained in mean-field theory [2] can be interpreted as a high
temperature indication of the occurrence of two order–disorder phase transitions. This view
is confirmed as essentially correct by the observation of a second ordering transition in many
magnetization and neutron scattering experiments on different Eu and Gd compounds [12–15].
Consistently, this additional phase transition is antiferromagnetic if 
3 < 0 and ferromagnetic
if 
3 > 0. We have attributed a second order parameter, called O4, to this ordering
process [12–14]. The transition temperature of this order parameter is 
3—in the mean
field approximation—and is characterized by a divergence of the cubic susceptibility χ3 [13].

Equation (2) shows that for the EuxSr1−xS samples 
3 changes its sign at xc
∼= 0.88. For

x < xc 
3 is negative, meaning that O4 is antiferromagnetic but for x > xc 
3 is positive and
O4 is ferromagnetic [13]. In other words, antiferromagnetic biquadratic interactions dominate
for small Eu concentrations but ferromagnetic three-spin interactions dominate for large Eu
concentrations. A similar situation is observed also in EuxSr1−xTe [12]. Since the critical
temperature of the conventional order parameter O2 is defined by all interactions it can be
expected to respond in some way to the change in spin order of O4 at xc. In fact, TC(x) and
TN(x) exhibit a small change in slope at xc.

We should admit that a long range magnetic order associated with O4 was verified
using the microscopic method of neutron scattering only for some materials for which the
spin order of O2 and O4 is of the same type. Examples are EuS and EuO, for which O2

and O4 are ferromagnetic [13], and Eu0.75Sr0.25Te, for which the two order parameters are
antiferromagnetic [3]. In those cases both order parameters give rise to the same set of Bragg
lines and can be distinguished only with investigations using a magnetic field: in Eu0.75Sr0.25S
the critical field B⊥

c associated with O4 is identified by a sudden relative decrease of the
antiferromagnetic scattering intensities as a function of increasing field [3] while in EuS and
EuO the existence of ferromagnetic O4 is noticed by a spontaneous magnetization component
transverse to an applied magnetic field [13]. If O2 and O4 have different ordering types the
ordered moment of O4 is usually very small and often beyond the sensitivity limits of neutron
scattering. This is obvious for antiferromagnets with ferromagnetic O4 such as GdAg, GdS,
EuTe. According to susceptibility measurements the ferromagnetic moment of O4 can be
estimated to be only a few per cent of the absolute moment in these antiferromagnets. One
exception is GdMg having ferromagnetic O2 and antiferromagnetic O4 [14]. Surprisingly, both
order parameters have a saturation moment of as large as ∼5 µB and are easily distinguished
since they contribute to different sets of Bragg reflections [15].

In the following we investigate the critical temperatures of O2. The critical temperatures
of O4 are much more difficult to identify experimentally and are frequently overlooked. For the
EuxSr1−xS samples very accurate TC(x) data are obtained by a combination of earlier specific
heat results [16] with the present zero-field neutron scattering investigations. Our analysis
confirms conclusions obtained in previous publications [1–3, 14] that fourth-order interactions
are sizable but due to the different signs of biquadratic and three-spin interactions they affect
the critical temperatures of the compact materials EuS and EuTe only slightly. Instead, they
change the spin dynamics fundamentally at all temperatures: in the spin wave regime fourth-
order interactions give rise to particular Bloch exponents for the temperature dependence of
the order parameter [17]. For materials with half-integral spin and three-dimensional (3D)
interactions a T 2 Bloch law was found empirically [12]. This law is confirmed here to hold
even for the most diluted EuxSr1−xS sample with x = 0.63. On the other hand, fourth-
order interactions change the critical behaviour also decisively. In agreement with mean-field
predictions it was observed in [18] that the order–disorder phase transition is mostly first order
in the sense that the order parameter is discontinuous. Our neutron scattering investigations
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Figure 1. Decomposition of the experimental Curie–Weiss temperatures θ1(x) of the linear
susceptibility χ1(T , x) of EuxSr1−xS powder samples into bilinear, biquadratic and three-spin
interactions. Knowing that at xc = 0.88 biquadratic and three-spin interactions cancel the bilinear
contribution to the linear coefficient of 14.5 K is given by 20.9 K. The difference of −6.4 K is due
to biquadratic interactions. The quadratic coefficient of 7.3 K is exclusively due to ferromagnetic
three-spin interactions. Four-spin interactions (∼x3) are not identified.

confirm this behaviour for all the four measured EuxSr1−xS samples with x = 0.95, 0.8, 0.7
and 0.63.

2. Experiment

2.1. EuxSr1−xS

The Curie–Weiss temperature 
1(x) of the linear susceptibility χ1(T , x) of the diamagnetically
diluted EuxSr1−xS ferromagnets shows very clearly the importance of three-spin interactions in
the paramagnetic phase. The experimental data of figure 1 are well described by equation (1).
According to the wet chemical procedure used to prepare the powder samples measured in this
experiment [19] we can be sure that Eu and Sr atoms are distributed statistically. This is an
important prerequisite for an interpretation of the experimental coefficients in equation (1) in
terms of second-order and fourth-order interaction strengths [20].

Taking a random distribution of Eu and Sr atoms for granted, the linear coefficient in
equation (1) is given by a superposition of conventional bilinear (Heisenberg) interactions
and by biquadratic interactions while the quadratic coefficient is given exclusively by three-
spin interactions [2]. Four-spin interactions would give a term ∼x3 and seem to be much
weaker.
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We can roughly separate the linear coefficient of 14.5 K in equation (1) into contributions
from bilinear and biquadratic interactions. As we know from measurements of the
cubic susceptibility χ3(T , x), ferromagnetic three-spin interactions and antiferromagnetic
biquadratic interactions cancel at about xc

∼= 0.88 in EuxSr1−xS [1, 2]. Equation (2)
summarizes the results of these investigations on account of the cubic Curie–Weiss constant

3(x) and shows that 
3(xc) = 0. It is therefore reasonable to assume that the value
of 
1 = 18.4 K at xc = 0.88 calculated by equation (1) is given exclusively by bilinear
interactions. Hence, the bilinear part of 
1(x) is given by 
bl

1 (x) = 20.9x in the mean-field
approximation.

The difference between the experimental coefficient of 14.5 K and the bilinear coefficient
of 20.9 K must be attributed to the biquadratic interactions. The biquadratic contribution
to 
1(x) is, hence, 


bq

1 = −6.4x. The complete decomposition of 
1(x) into contributions
from bilinear interactions, 
bl , biquadratic interactions, 
bq , and three-spin interactions, 
3S ,
is therefore


1(x) = 
bl + 
bq + 
3S = +20.9x − 6.4x + 7.3x2. (3)

This analysis shows that even though biquadratic and three-spin interactions are sizeable
they do not contribute much to the high-temperature interaction sum, i.e. 
1(x), because
of their different signs. This does not necessarily mean that they also affect the transition
temperatures weakly. Depending on the spin structure the different interaction processes can
be very differently weighted in the ordered state compared to the paramagnetic average.

The high-temperature interaction strengths as given by equations (1) and (3) should be
reflected in a modified form also by the ordering temperatures TC(x). In particular a term
quadratic in x due to ferromagnetic three-spin interactions should be observable. Using
instrument D9 at ILL/Grenoble we have re-evaluated the Curie temperatures of four EuxSr1−xS
single crystals with x = 0.95, 0.8, 0.7 and 0.63 by means of the ferromagnetic 1,1,1 neutron
diffraction intensity. These measurements confirmed earlier critical temperature data obtained
with specific heat measurements within a mean error of only ±0.1 K [16]. Hence, we have
rather precise TC(x) data for analysis (see figure 2). Fitting a polynomial to the TC(x) data for
the composition range xc � 0.88 for which the high-temperature fourth-order interaction sum
is antiferromagnetic (
3 < 0) we obtain

TC(x) = −2.95x + 21.7x2 (x < xc). (4)

The statistical errors of both coefficients are ±0.2. The result of equation (4) indicates that
antiferromagnetic biquadratic interactions reduce the Curie temperature tremendously and
even dominate over the ferromagnetic bilinear interactions according to the negative sign of
the linear coefficient. Three-spin interactions are also much more important compared to the
paramagnetic state (equations (1) and (3)) and make (or let) the Curie temperature steeply
increase with increasing x.

Assuming that at xc = 0.88 fourth-order interactions compensate each other and do
not contribute at all to TC we can easily obtain the mean-field phase line T bl

C (x) expected
for the case where only bilinear interactions were present. According to equation (4)
TC(x = 0.88) = 14.2 K. The T bl

C (x) phase line is therefore given in the mean-field
approximation by

T bl
C (x) = +16.1x. (5)

We now can calculate how strongly antiferromagnetic biquadratic interactions contribute to the
experimental TC(x) phase line in the composition range x < xc. This contribution is simply
given by the difference between the total linear coefficients in equation (4) and the bilinear
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Figure 2. Phase diagram of EuxSr1−xS showing Curie temperatures TC(x) of the conventional
order parameter O2. Filled symbols are specific heat data from [16], open symbols are neutron
scattering results of this work. Experimental errors correspond to the size of the symbols. At
xc = 0.88 antiferromagnetic biquadratic and ferromagnetic three-spin interactions cancel. This
defines the expected Curie line due to bilinear interactions. For x < 0.88 the fitted coefficients of the
rank-two polynomial show the strong influence of antiferromagnetic biquadratic and ferromagnetic
three-spin interactions.

coefficient in equation (5), i.e. T
bq

C (x) = −19.1x. The decomposition of the observed TC(x)

phase line into bilinear, biquadratic and three-spin contributions is therefore

TC(x) = T bl
C (x) + T

bq

C (x) + T 3S
C (x) = 16.1x − 19.1x + 21.7x2 (x < xc). (6)

Of course, this is a qualitative estimate only. In particular, it must be questioned whether in an
exact theory the three interaction processes contribute simply as additive as in equation (6) to
the total transition temperature.

It is very surprising that biquadratic and three-spin interactions contribute with their full
strength given by equation (2) to the Curie phase line in equation (6). Compared with the
paramagnetic average given by equation (3) they are three times stronger in the ordered
state. The strongly changing weight of the fourth-order interaction processes between the
paramagnetic and the ordered state may provide a qualitative explanation for the first order
character of the Curie transition and indicates furthermore that the spin order cannot be of the
collinear ferromagnetic type.

At xc
∼= 0.88 the TC(x) curve exhibits a small but definite change in slope. Our rank-

two polynomial fit to the TC(x) data for x < xc (see equations (4) and (6)) extrapolates to
TC(x = 1) = 18.8 K and is about 13% larger than the observed Curie temperature of EuS
of 16.6 K. Note that the average error between the fit function given in equation (4) and the
experimental Curie temperatures of the range x < xc is smaller than 1%. The obtuse kink the
TC(x) curve exhibits at xc indicates some change in spin structure of the conventional order
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parameter O2 induced by the change in spin order from ferromagnetic to antiferromagnetic
of O4. Fitting a polynomial of rank two onto the only two data points of the range x > 0.88
gives the approximative result

TC(x) = 11.1x + 5.5x2 (x > xc = 0.88). (7)

We can again separate the linear coefficient in equation (7) into contributions from bilinear and
biquadratic interactions. Knowing that bilinear interactions are given by equation (5) for all
compositions the biquadratic contribution is clearly −5.0 K. TC(x) can therefore be written as

TC(x) = T bl
C (x) + T

bq

C (x) + T 3S
C = 16.1x − 5.0x + 5.5x2 (x > xc). (8)

Comparison between equation (8) and equation (3) shows that for x > xc TC(x) is nearly
proportional to 
1(x) with 
1(x) ∼ 1.30TC(x). In other words, the ratio between the fourth-
order interaction strength in the paramagnetic and in the ordered state corresponds to that
one of the bilinear interactions. On the other hand, the ratio between the biquadratic and the
three-spin coefficient in equations (2), (3), (6) and (8) is nearly constant (∼−0.88), indicating
that both interaction types always act with the same relative strength.

We should note that the difference in spin structure between the composition range x > xc

and x < xc is not yet sufficiently resolved. For x > xc the field parallel spontaneous
magnetization component reaches the theoretical saturation value of 7 µB but there also exists
a magnetization component transverse to the field. This component which was observed
with neutron scattering and ac-susceptibility measurements performed perpendicular to the
field [13], is attributed to the ferromagnetic order parameter O4. On the other hand, for x < xc

O4 can be expected to be antiferromagnetic. In fact, the observed field parallel spontaneous
magnetization component begins to fall below 7 µB for x � xc but no antiferromagnetic
component was observed in our neutron scattering measurements, possibly due to intensity
problems with this weak antiferromagnetic component.

2.2. EuxSr1−xTe

The same analysis as for EuxSr1−xS is performed for the Néel line TN(x) in the EuxSr1−xTe
phase diagram (see figure 3) and yields

T
‖
N(x) = 2.75x + 8.45x2 (9)

for the composition range xc � 0.85. In this range antiferromagnetic O4 was identified by
magnetization measurements [12, 13] on account of a second critical field, B⊥

c , but also with
neutron scattering measurements [3]. In the neutron scattering experiments it is observed that
the antiferromagnetic MnO type scattering lines exhibit a sudden intensity loss at B⊥

c as a
function of an increasing magnetic field [3]. This is attributed to the disappearance of O4

at B⊥
c .
The Néel temperatures in figure 3 are taken from [21, 22]. As we know from experimental

investigations of the cubic susceptibility χ3(T , x) [1] the third-order Curie–Weiss temperature

3(x) can be written as


3(x) = −17.8x + 20.8x2. (10)

From equation (10) it turns out that antiferromagnetic biquadratic interactions and
ferromagnetic three-spin interactions cancel at xc = 0.85 in EuxSr1−xTe. This allows us
to calculate the Néel phase line, T bl

N (x), expected for the case where only bilinear interactions
were present. Assuming that fourth-order interactions do not contribute to the Néel temperature
at xc = 0.85 we obtain from equation (9) TN(x = 0.85) = 8.4 K and therefore in the mean-field
approximation

T bl
N = 9.9x. (11)
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Figure 3. Phase diagram of EuxSr1−xTe showing the Néel line T
‖
N(x) of the conventional order

parameter O2 and the Néel line T ⊥
N (x) of the order parameter O4. At xc = 0.85 antiferromagnetic

biquadratic interactions and ferromagnetic three-spin interactions compensate. The straight line
∼x gives the expected Néel line without fourth-order interactions. For x < 0.85 fourth-order
interactions strongly reduce T

‖
N . For x > 0.85 fourth-order interactions hardly contribute to T

‖
N .

Subtracting from the fitted linear coefficient of 2.75 the bilinear contribution of 9.9 K we obtain
for the biquadratic coefficient −7.2. The complete decomposition of the observed TN(x) phase
line into bilinear, biquadratic and three-spin interactions is therefore

T
‖
N(x) = T bl

N (x) + T
bq

N (x) + T 3S
N = 9.9x − 7.2x + 8.5x2 (x < xc). (12)

We observe again that the coefficients of biquadratic and three-spin interactions in equation (10)
are proportional to the corresponding coefficients in equation (12), meaning that their relative
strength is independent of the spin order type. This corresponds to the fact that the two
interactions are members of the same class and, apparently, always act in a similar way.

In the composition range 0.85 � x � 1 with a ferromagnetic fourth-order interaction sum
(
3 > 0) a fit to the only two TN data points gives very approximately

T
‖
N = 11.0x − 1.2x2 (x > xc). (13)

Comparison of the linear coefficient of 11.0 K with the bilinear coefficient of 9.9 K in
equation (11) together with the very small quadratic coefficient shows that fourth-order
interactions affect the Néel temperature very little for x > xc. Formally, the linear and
quadratic coefficient in equation (13) show that antiferromagnetic biquadratic interactions
contribute positively to TN but ferromagnetic three-spin interactions contribute negatively
to TN . Such an effect on the Néel line we would intuitively expect. But considering the large
experimental uncertainty we should not overstress the result in equation (13).

Summarizing the results of this section it appears empirically possible to explain
the deviations of the observed phase lines TC(x) and TN(x) from the simple mean-field
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proportionality ∼x by fourth-order exchange interactions. These interactions affect the
transition temperatures not necessarily according to their strength in the paramagnetic phase.
Depending on the spin structures of O4 and O2 the impact of fourth-order interactions on the
critical temperature of O2 can be much stronger but also much weaker than on the paramagnetic
Curie–Weiss temperature 
1. This observation seems to be logically connected with the fact
that fourth-order interactions make the conventional phase transitions first order. On the other
hand, the assumption that without fourth-order interactions the phase lines are essentially
proportional to the concentration of the magnetic atoms appears to be a reasonable first-order
approximation. Using this assumption the remarkable systematics is obtained that the relation
between biquadratic and three-spin interactions (−0.88 for EuxSr1−xS) is constant for all spin
structures occurring in the phase diagram. As a generalization, in mixed materials any deviation
of the order–disorder phase line from a linear composition dependence ∼x may indicate the
existence of fourth-order interactions. This is, of course, correct only if the microscopic
interaction parameters do not change with composition.

2.3. Investigation of the T 2 law

For many isotropic 3D ferromagnets and antiferromagnets with half-integral spin it was
observed that the deviation of the order parameter from its saturation values at absolute zero
is given by a T 2 law [12, 14, 17]. Interestingly, the T 2 law is independent of the spin order
type and holds over a temperature range of typically T � 0.65Tcrit but for some materials up
to T � 0.8Tcrit . Since results for EuxSr1−xTe have been reported earlier [3] we discuss here
only EuxSr1−xS.

The T 3/2 Bloch law predicted for the Heisenberg ferromagnet [23] is not confirmed for the
ferromagnets EuS, EuO and CrBr3 [12, 17]. We explain this by the changed spin dynamics due
to fourth-order exchange interactions [12]. Since the T 2 law is observed also in experiments
such as zero-field NMR which do not distinguish between O2 and O4 it can be concluded that
it is common to both order parameters. This was shown explicitly for GdMg [13, 14] having
ferromagnetic O2 and antiferromagnetic O4. In this case both order parameters are easily
distinguished on account of different sets of Bragg reflections.

In figure 4 we show the normalized magnetic moments for four EuxSr1−xS single crystals
obtained from the integrated 1,1,1 scattering intensities as a function of the squared absolute
temperature. In contrast to magnetization measurements zero-field neutron scattering has the
advantage of avoiding the ambiguity normally associated with the extrapolation to an internal
field of zero. It can clearly be seen in figure 4 that the T 2 law holds even for the most diluted
sample with x = 0.63.

Nuclear magnetic resonance, NMR, is the most accurate method in magnetism but,
unfortunately, it is less suited for the evaluation of the averaged polarization in mixed crystals.
Due to the high resolution of this method and the short range of the transferred hyperfine fields
very complicated NMR spectra result in mixed materials from which the configuration average
is difficult to obtain. Practically, application of NMR is restricted to the pure materials. In
figure 5 we have plotted the 153Eu zero-field NMR resonance frequencies of EuS collected
from two different literature sources [24, 25] against the square of the absolute temperature.
Both data sets agree very well. It can be seen that the T 2 law holds up to a temperature
of more than 0.7 of the Curie temperature (upper scale). In those zero-field measurements
it is not clear which combination of the two ferromagnetic order parameters is measured.
It is therefore useful to compare the T 2 coefficient obtained by NMR with that obtained in
conventional magnetization measurements. Although the extrapolation of the magnetization
curves to an internal field of zero cannot be made unambiguously and implies systematic errors,
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Figure 4. Normalized spontaneous magnetizations obtained from integrated 1,1,1 Bragg scattering
intensities as a function of squared absolute temperature. For all EuxSr1−xS samples the T 2 law
expected for isotropic magnetic materials with three-dimensional interactions and half integral spin
[12, 17] is confirmed.

both methods give very precisely the same value of 0.014 13 ± 0.000 05 µB K−2. This could
mean that both methods measure nearly the same combination of both ferromagnetic order
parameters in EuS [12, 13].

In figure 6 we present the composition dependence of the T 2 coefficient. These data
reveal the changing spin order at xc = 0.88 more clearly than the TC(x) data. Closed
symbols are neutron scattering results while open symbols are from conventional, i.e. field
parallel, magnetization measurements. Both data sets agree very well which is not self-
evident. Since the T 2 coefficient is characteristic for the spin dynamics in the presence of
fourth-order interactions, the strong change at xc = 0.88 shows the changing importance of
these interactions associated with the changing spin order at xc. This is in keeping with the
conclusions drawn from the analysis of the TC(x) phase line (compare equations (6) and (8)).

2.4. Critical magnetic behaviour

In order to obtain accurate critical temperature values for the EuxSr1−xS single crystals using
neutron scattering the critical temperature range must be investigated in detail. Evaluation of
the critical temperature by an extrapolation of the order parameter down to zero is complicated
by the fact that magnetic Bragg intensities decrease strongly on approaching the critical
temperature. On the other hand, critical diffuse scattering intensities increase strongly on
approaching the critical temperature from the paramagnetic side. This masks the critical
behaviour of the order parameter near TC . Using standard line profile fit programs to evaluate
the integrated scattering intensities, the transition between the fitted Bragg intensities below
TC and the fitted critical diffuse scattering intensities above TC can be noticed as an inflection
point at TC . If the Bragg line is rather narrow such that the integration interval can be
kept small critical diffuse scattering is pronounced only in the immediate temperature range
above TC . Figure 7 gives an example for this. Shown is the calibrated magnetic moment
obtained from the 1,1,1 scattering intensities of Eu0.95Sr0.05S as a function of temperature.
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Figure 5. Zero-field 153Eu NMR frequencies of EuS from two literature sources [24, 25] as a
function of squared absolute temperature. NMR resonance frequencies sample the hyperfine field
at the Eu nucleus which is proportional to the spontaneous magnetization. The T 2 Bloch law holds
up to 0.75 of the Curie temperature.

The weak nuclear scattering contribution to the 1,1,1 intensity is only about 0.1 of the
saturation intensity for T → 0 and was subtracted before. In the following data processing
we let TC be fixed to the visible inflection point instead of treating TC as an adjustable fit
parameter. The rather sharp transition between the ferromagnetic Bragg intensities and the
diffuse scattering intensities can be seen clearly in figure 7. The Curie temperature is therefore
defined as TC = 15.5 ± 0.05 K with an error given by the temperature increments of typically
0.1 K between successive measurements. This value agrees well with 15.63 K obtained by
specific heat measurements [16].

It can be seen that critical diffuse scattering affects only the first few data points above TC .
Since these intensities are considerably weaker for T < TC we refrained from correcting
the Bragg intensities for the small diffuse scattering contributions. To evaluate the critical
exponent β of the spontaneous magnetization we plot the magnetic moment data of figure 7
against (TC − T )β using suitable test values for β. Figure 8 shows that the mean field value
β = 0.5 evidently describes the results better than the Heisenberg value β = 0.367 [26]. To
demonstrate this a curved line labeld by β = 0.367 is added, which indicates how the straight
line drawn through the experimental points would be bent if the data were alternatively plotted
against (TC − T )0.367. Note that the horizontal error bars give the uncertainty in defining TC .
The straight line fitted to the experimental points in figure 8 has been transferred to the linear
temperature scale in figure 7 and is labelled by β = 0.5.
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Figure 6. T 2 coefficients of spontaneous magnetization of EuxSr1−xS obtained from data analyses
according to figures 4 and 5 as a function of composition. The strong change at xc = 0.88 is
attributed to the changing importance of fourth-order interactions (see discussion of figure 2).
Filled symbols are from neutron scattering, open symbols are from magnetization measurements.

According to our data analyses following the procedure shown in figures 7 and 8 for
x = 0.95 the Curie transitions of all investigated samples of the EuxSr1−xS composition series
turned out to be first order. This is hardly recognized in the original scattering data in figure 7.
A first-order transition observed with neutron scattering conforms to recent magnetization
studies on EuS and EuO, which also suggested first-order transitions for these materials [18].
Also mean-field calculations predict first-order transitions if fourth-order interactions are
sufficiently strong [6–9]. We should note that only the order parameter is discontinuous
but that susceptibility [18] and correlation length [27] diverge rather normally.

To add one further example we show in figure 9 a log–log plot of the ordered magnetic
moment of Eu0.8Sr0.2 against TC − T after subtraction of the discontinuity at TC . The Curie
temperature was again fixed to the inflection point of the integrated scattering intensities as a
function of temperature. In order to evaluate the discontinuity of the order parameter at TC the
magnetic moment data are plotted against (TC − T )β using an approximate value of β. This
allows one to evaluate �m by way of extrapolation (TC − T )β → 0 (compare figure 8). It is
very surprising that nearly the same discontinuity value of �m ∼ 0.2 ∼= 1.4 µB results for all
EuxSr1−xS samples.

We should note that in contrast to the Eu0.95Sr0.05S sample the order parameter O4 of the
Eu0.8Sr0.2S sample is antiferromagnetic. We can therefore be sure that the 1,1,1 Bragg intensity
samples O2 individually. On the other hand, the influence of ferromagnetic O4 decreases very
fast with diamagnetic dilution and seems to be nearly negligible for the Eu0.95Sr0.05S sample.

The same type of analysis but for Eu0.63Sr0.37S is shown in figure 10. For this strongly
diluted sample the critical exponent has changed to β = 1. Smaller indications for this change
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Figure 7. Ordered magnetic moment per Eu atom evaluated from the integrated 1,1,1 Bragg
scattering intensity of Eu0.95Sr0.05S as a function of temperature. The inflection point is
characteristic for the change from Bragg scattering to critical diffuse scattering and is taken as
the Curie temperature. With this choice of TC a first-order transition with a discontinuity of
the order parameter of �µ = 1.27 µB results. Further continuous increase of magnetization is
described by a critical power law with mean-field critical exponent of β = 0.5.

Figure 8. Magnetic moment data as shown in figure 7 against (TC − T )0.5. The curve labelled by
the Heisenberg exponent β = 0.367 shows how the straight line fitted through the experimental
points would be bent if the data were plotted alternatively over (TC − T )0.367. A discontinuity of
1.27 µB/Eu can be extrapolated for T → TC .

are already observed for the sample with x = 0.7. We interpret this result as a transition to a
new universality class for a random distribution of magnetic moments [28, 29]. The value of
β = 1 must be considered as characteristic for half-integral spin. The corresponding value for
integral spin remains to be measured.
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Figure 9. Log–log plot of ordered moment derived from 1,1,1 neutron scattering intensity against
(TC − T ) for Eu0.8Sr0.2S after subtraction of a discontinuity of �µ = 1.44 µB/Eu. The value of
the discontinuity is obtained in a graphical way as shown in figure 8.

Figure 10. Log–log plot of ordered magnetic moment against (TC − T ) for Eu0.63Sr0.37S after
subtraction of a discontinuity of �µB = 1.49 µB . For this strongly diluted ferromagnet a change
to a critical exponent of β = 1 is observed.

Following these results we reconsidered earlier neutron scattering data of the
antiferromagnet EuTe obtained on instrument D10 at the Institute Laue–Langevin, Grenoble.
We analysed the intensity data for the 1/2,1/2,3/2 data in the same way as for the 1,1,1 data
of the EuxSr1−xS samples. Figure 11 shows that a very similar result is obtained: the Néel
transition turns out to be first order and for the critical exponent β the mean-field value β = 0.5
is evidently the better alternative. The discontinuity of the order parameter has also a similar
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Figure 11. Normalized sublattice magnetization of EuTe in the critical temperature range against
(T

‖
N − T )0.5. The Néel temperature is first order with a discontinuity of the order parameter of

∼0.23. Further increase of order parameter is described by a critical power law with mean field
critical exponent β = 0.5.

magnitude of ∼0.23. If the Néel temperature is treated as an adjustable parameter and the
phase transition is assumed to be continuous a much smaller value will be fitted for β. In this
way we obtained a critical exponent of β = 0.29 in an earlier publication [22]. This value
is unexplained for an isotropic material with 3D interactions because it conforms neither to
the Heisenberg nor to the mean-field model of critical behaviour. The analysis presented here
has the great advantage of resulting in the well known mean-field value of β = 0.5. As was
observed for GdMg the mean-field approximation is not a too simple model but turns out to
be exact for isotropic magnetic materials with half-integral spin values [14]. This was not
recognized as a general rule up to now because most isotropic magnets exhibit hard to identify
first-order transitions. GdMg is an exceptional material in having a Curie transition of second
order [14]. This allows one to observe the classical mean-field critical behaviour as seems to
be characteristic for half-integral spin (S = 7/2). In [14] mean-field critical exponents were
observed for the susceptibility (γ = 1), the spontaneous magnetization (β = 0.5) and the
critical isotherm (δ = 3) of GdMg.

3. Conclusions

For the diamagnetically diluted ferromagnets EuxSr1−xS a complete decomposition of the
experimental Curie–Weiss temperature 
1(x) into contributions from bilinear interactions
(∼ x), biquadratic interactions (∼ x) and three-spin interactions (∼ x2) is presented. Knowing
from measurements of the cubic susceptibility that antiferromagnetic biquadratic interactions
and ferromagnetic three-spin interactions cancel at xc = 0.88 a decomposition of the linear x

coefficient into bilinear and biquadratic interactions is possible. A similar mean-field analysis
for the critical temperature TC(x) must be performed separately for x > xc and x < xc

because of spin structure changes due to the sign change of the fourth-order interaction sum
at xc = 0.88. Although this complication limits the accuracy of a polynomial fit to TC(x) it
is observed that in both regions of the phase diagram the experimental TC(x) data can also
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be approximated by a linear plus a quadratic x term. In other words, the observed deviations
of the Curie line TC(x) from a simple linear x dependence can be explained in the same
way as for 
1(x) by three-spin interactions. On the other hand, the mean field prediction
that without fourth-order interactions TC(x) is simply proportional to the concentration of
the magnetic atoms, x, seems to be reasonable. Using this assumption the remarkable
systematics is obtained that the proportion between biquadratic and three-spin interactions
is constant, i.e. independent of spin order. This means that the two interactions are always
satisfied in the same way by the resulting spin structures and can be treated as proportional or
equivalent.

We must assume that the appropriateness of mean-field theory for an analysis of TC(x)

in materials with half-integral spin must be considered as a consequence of fourth-order
interactions. These interactions affect the spin dynamics fundamentally and seem also to
be responsible for the observed mean-field critical behaviour. At low temperatures quantum
effects become, of course, important and a T 2 Bloch law is observed for the order parameter in
materials with half-integral spin. In contrast to this, Bloch’s original T 3/2 law was calculated
assuming only Heisenberg interactions [23]. Even for the most diluted EuxSr1−xS sample
with x = 0.63 the T 2 law is observed to hold. For the antiferromagnets EuxSr1−xTe the same
behaviour was reported earlier [3].

The conventional ordering transitions of all EuxSr1−xS samples and of EuTe turned out
to be first order in spite of no obvious latent heat [30]. First-order transitions observed with
neutron scattering conform to recent magnetization studies on EuS and EuO [13] and to mean-
field predictions [6–9].

A direct identification of the critical temperature is crucial for a reliable analysis of the
critical behaviour. In neutron scattering experiments the transition temperature was often not
measured directly but was obtained by extrapolating the order parameter from values as large
as 0.3 down to zero [27]. This introduces a considerable ambiguity on the value of the critical
temperature and on the type of critical magnetic behaviour. If the critical temperature is not
precisely known nearly equivalent fits are possible either assuming a discontinuous phase
transition with a following mean-field critical power law or assuming a continuous phase
transition with a nearly Heisenberg β value. Here we fixed the ordering temperature to the
obvious transition from Bragg to critical diffuse scattering intensities. Only for order parameter
discontinuities of larger than ∼0.3 does the first-order character of the phase transition become
obvious in the as-measured neutron scattering spectra. We consider it a justification of our
analysis that the well known mean-field critical exponent β = 0.5 is obtained for all materials
with half-integral spin. This conforms to the mean-field critical behaviour observed for GdMg,
the only known isotropic 3D material having half-integral spin quantum number and a second-
order Curie transition [14, 31].

A change from β = 0.5 to β = 1 is observed at a composition of about x ∼ 2/3 in
EuxSr1−xS. This can be interpreted as a transition to a new universality class for a random
distribution of the magnetic atoms [28, 29]. It would be very interesting to evaluate the
corresponding critical exponent for materials with integral spin.
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[22] Köbler U, Apfelstedt I, Fischer K, Zinn W, Scheer E, Wosnitza J, v Löhneysen H and Brückel Th 1993 Z. Phys.
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